侧边栏壁纸
博主头像
平平无奇小陈博主等级

今天不想跑,所以才去跑。

  • 累计撰写 46 篇文章
  • 累计创建 49 个标签
  • 累计收到 33 条评论

浅谈分布式理论 CAP 原则 与 BASE 理论

平平无奇小陈
2022-03-16 / 0 评论 / 0 点赞 / 269 阅读 / 3,264 字
温馨提示:
本文最后更新于 2022-03-24,若内容或图片失效,请留言反馈。部分素材来自网络,若不小心影响到您的利益,请联系我们删除。

浅谈分布式理论 CAP 原则 与 BASE 理论

CAP 原则

CAP 原则,又称 CAP 定理,指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性)这三个基本需求,最多只能同时满足其中的 2 个。

  • Consistency:一致性(强一致性),访问所有的节点得到的数据应该是一样的。
  • Availability:可用性,所有节点都保持高可用性。
  • Partiton tolerence:分区容错性。由于网络是不可靠的,所有节点之间很可能出现无法通讯的情况,在节点不能通信时,要保证系统可以继续正常服务。

分区的概念

在分布式系统中,不同的节点分布在不同的子网络中,由于一些特殊的原因,这些子节点之间出现了网络不通的状态,但他们的内部子网络是正常的。从而导致了整个系统的环境被切分成了若干个孤立的区域,这就是分区。

C(一致性) 和 A(可用性) 的矛盾

一致性和可用性,为什么不可能同时成立?答案很简单,因为可能通信失败(即出现分区容错)。

系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。

CAP 原则权衡

当发生网络分区的时候,如果我们要继续服务,那么强一致性和可用性只能 2 选 1。也就是说当网络分区之后 P 是前提,决定了 P 之后才有 C 和 A 的选择。也就是说分区容错性(Partition tolerance)我们是必须要实现的。

image.png

CA

CA without P:如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但放弃P的同时也就意味着放弃了系统的扩展性,也就是分布式节点受限,没办法部署子节点,这是违背分布式系统设计的初衷的。

  • 传统的关系型数据库:Oracle、MySQL

CP

CP without A:如果不要求A(可用),相当于每个请求都需要在服务器之间保持强一致,而P(分区)会导致同步时间无限延长(也就是等待数据同步完才能正常访问服务),一旦发生网络故障或者消息丢失等情况,就要牺牲用户的体验,等待所有数据全部一致了之后再让用户访问系统。设计成CP的系统其实不少,最典型的就是分布式数据库,如Redis、HBase等。

对于这些分布式数据库来说,数据的一致性是最基本的要求,因为如果连这个标准都达不到,那么直接采用关系型数据库就好,没必要再浪费资源来部署分布式数据库。

  • No SQL:Mongo DB、HBase、Redis

AP

AP wihtout C:要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,为了高可用,每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。典型的应用就如某米的抢购手机场景,可能前几秒你浏览商品的时候页面提示是有库存的,当你选择完商品准备下单的时候,系统提示你下单失败,商品已售完。

这其实就是先在 A(可用性)方面保证系统可以正常的服务,然后在数据的一致性方面做了些牺牲,虽然多少会影响一些用户体验,但也不至于造成用户购物流程的严重阻塞。

  • No SQL:Coach DB

BASE 理论

BASEBasically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的简写,BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。

基本可用

基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性——但请注意,这绝不等价于系统不可用,以下两个就是“基本可用”的典型例子。

  • 响应时间上的损失:正常情况下,一个在线搜索引擎需要0.5秒内返回给用户相应的查询结果,但由于出现异常(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。
  • 功能上的损失:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。

弱状态

弱状态也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据听不的过程存在延时。

最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性

亚马逊首席技术官Werner Vogels在于2008年发表的一篇文章中对最终一致性进行了非常详细的介绍。他认为最终一致性时一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够胡渠道最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟,系统负载和数据复制方案设计等因素。

在实际工程实践中,最终一致性存在以下五类主要变种。

因果一致性

因果一致性是指,如果进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。

读己之所写:

读己之所写是指,进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者而言,其读取到的数据一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。

会话一致性:

会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所写”的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。

单调读一致性:

单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据访问都不应该返回更旧的值。

单调写一致性:

单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。

小结

总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统事务的ACID特性使相反的,它完全不同于ACID的强一致性模型,而是提出通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性与BASE理论往往又会结合在一起使用。

扩展

分布式系统的典型应用

分布式系统是一个非常广泛的概念,它最终要落实到解决实际问题上,不同的问题有不同的方法和架构。所有的开源软件都是以某个应用场景出现,而纯粹以“分布式”概念进行划分的比较少见。但如果以算法划分,到能分出几类:

  1. Leader选举为主的一类算法,比如paxos、viewstamp,就是现在zookeeper、Chuby等工具的主体
  2. 以分布式事务为主的一类主要是二段提交,这些分布式数据库管理器及数据库都支持
  3. 若一致性为主的,主要代表是Cassandra的W、R、N可调节的一致性
  4. 租赁机制为主的,主要是一些分布式锁的概念,目前还没有看到纯粹“分布式”锁的实现
  5. 失败探测为主的,主要是Gossip和phi失败探测算法,当然也包括简单的心跳
  6. 弱一致性、因果一致性、顺序一致性为主的,开源尚不多,但大都应用在Linkedin、Twitter、Facebook等公司内部
  7. 异步解耦为主的,还有各类Queue
0

评论区